top of page

Vimentin Is Required for Lung Adenocarcinoma Metastasis via Heterotypic Tumor Cell-Cancer-Associated Fibroblast Interactions during Collective Invasion.

Purpose: Vimentin is an epithelial-to-mesenchymal transition (EMT) biomarker and intermediate filament protein that functions during cell migration to maintain structure and motility. Despite the abundance of clinical data linking vimentin to poor patient outcome, it is unclear if vimentin is required for metastasis or is a correlative biomarker. We developed a novel genetically engineered mouse model (GEMM) to probe vimentin in lung adenocarcinoma metastasis. Experimental Design: We used the LSL-KrasG12D/Lkb1fl/fl/Vim-/- model (KLV-/-), which incorporates a whole-body knockout of vimentin and is derived from the Cre-dependent LSL-KrasG12D/Lkb1fl/fl model (KLV+/+). We compared the metastatic phenotypes of the GEMMs and analyzed primary tumors from the KLV models and lung adenocarcinoma patients to assess vimentin expression and function. Results: Characterization of KLV+/+ and KLV-/- mice shows that although vimentin is not required for primary lung tumor growth, vimentin is required for metastasis, and vimentin loss generates lower grade primary tumors. Interestingly, in the KLV+/+ mice, vimentin was not expressed in tumor cells but in cancer-associated fibroblasts (CAFs) surrounding collective invasion packs (CIPs) of epithelial tumor cells, with significantly less CIPs in KLV-/- mice. CIPs correlate with tumor grade and are vimentin-negative and E-cadherin-positive, indicating a lack of cancer cell EMT. A similar heterotypic staining pattern was observed in human lung adenocarcinoma samples. In vitro studies show that vimentin is required for CAF motility to lead tumor cell invasion, supporting a vimentin-dependent model of collective invasion. Conclusions: These data show that vimentin is required for lung adenocarcinoma metastasis by maintaining heterotypic tumor cell-CAF interactions during collective invasion.

Modulation of Bax and mTOR for Cancer Therapeutics.

A rationale exists for pharmacologic manipulation of the serine (S)184 phosphorylation site of the proapoptotic Bcl2 family member Bax as an anticancer strategy. Here, we report the refinement of the Bax agonist SMBA1 to generate CYD-2-11, which has characteristics of a suitable clinical lead compound. CYD-2-11 targeted the structural pocket proximal to S184 in the C-terminal region of Bax, directly activating its proapoptotic activity by inducing a conformational change enabling formation of Bax homooligomers in mitochondrial membranes. In murine models of small-cell and non-small cell lung cancers, including patient-derived xenograft and the genetically engineered mutant KRAS-driven lung cancer models, CYD-2-11 suppressed malignant growth without evident significant toxicity to normal tissues. In lung cancer patients treated with mTOR inhibitor RAD001, we observed enhanced S184 Bax phosphorylation in lung cancer cells and tissues that inactivates the propaoptotic function of Bax, contributing to rapalog resistance. Combined treatment of CYD-2-11 and RAD001 in murine lung cancer models displayed strong synergistic activity and overcame rapalog resistance in vitro and in vivo Taken together, our findings provide preclinical evidence for a pharmacologic combination of Bax activation and mTOR inhibition as a rational strategy to improve lung cancer treatment.

Targeting adhesion signaling in KRAS, LKB1 mutant lung adenocarcinoma.

Loss of LKB1 activity is prevalent in KRAS mutant lung adenocarcinoma and promotes aggressive and treatment-resistant tumors. Previous studies have shown that LKB1 is a negative regulator of the focal adhesion kinase (FAK), but in vivo studies testing the efficacy of FAK inhibition in LKB1 mutant cancers are lacking. Here, we took a pharmacologic approach to show that FAK inhibition is an effective early-treatment strategy for this high-risk molecular subtype. We established a lenti-Cre-induced Kras and Lkb1 mutant genetically engineered mouse model (KLLenti) that develops 100% lung adenocarcinoma and showed that high spatiotemporal FAK activation occurs in collective invasive cells that are surrounded by high levels of collagen. Modeling invasion in 3D, loss of Lkb1, but not p53, was sufficient to drive collective invasion and collagen alignment that was highly sensitive to FAK inhibition. Treatment of early, stage-matched KLLenti tumors with FAK inhibitor monotherapy resulted in a striking effect on tumor progression, invasion, and tumor-associated collagen. Chronic treatment extended survival and impeded local lymph node spread. Lastly, we identified focally upregulated FAK and collagen-associated collective invasion in KRAS and LKB1 comutated human lung adenocarcinoma patients. Our results suggest that patients with LKB1 mutant tumors should be stratified for early treatment with FAK inhibitors.

RhoA, a novel tumor suppressor or oncogene as a therapeutic target?

Ras homolog gene family, member A (RhoA) is a small GTPase that plays critical roles in several essential cell functions, such as migration, adhesion, proliferation, and gene expression. RhoA switches between a GTP-bound active form and a GDP-bound inactive form. The activated RhoA directly interacts with its downstream effectors, such as Rho kinase (ROCK) to regulate actomyosin dynamics, or mDia1 to control stress fiber and filopodia formation. The activity of RhoA is primarily regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating protein (GAP), and guanine nucleotide-dissociation inhibitors (GDIs).

LKB1 represses focal adhesion kinase (FAK) signaling via a FAK-LKB1 complex to regulate FAK site maturation and directional persistence.

Liver kinase β1 (LKB1, also known as STK11) is a serine/threonine kinase that has multiple cellular functions including the regulation of cell polarity and motility. Murine proteomic studies show that LKB1 loss causes aberrant adhesion signaling; however, the mechanistic underpinnings of this relationship are unknown. We show that cells stably depleted of LKB1 or its co-activator STRADα have increased phosphorylation of focal adhesion kinase (FAK) at Tyr(397)/Tyr(861) and enhanced adhesion to fibronectin. LKB1 associates in a complex with FAK and LKB1 accumulation at the cellular leading edge is mutually excluded from regions of activated Tyr(397)-FAK. LKB1-compromised cells lack directional persistence compared with wild-type cells, but this is restored through subsequent pharmacological FAK inhibition or depletion, showing that cell directionality is mediated through LKB1-FAK signaling. Live cell confocal imaging reveals that LKB1-compromised cells lack normal FAK site maturation and turnover, suggesting that defects in adhesion and directional persistence are caused by aberrant adhesion dynamics. Furthermore, re-expression of full-length wild-type or the LKB1 N-terminal domain repressed FAK activity, whereas the kinase domain or C-terminal domain alone did not, indicating that FAK suppression is potentially regulated through the LKB1 N-terminal domain. Based upon these results, we conclude that LKB1 serves as a FAK repressor to stabilize focal adhesion sites, and when LKB1 function is compromised, aberrant FAK signaling ensues, resulting in rapid FAK site maturation and poor directional persistence.

A screen for conditional growth suppressor genes identifies the Drosophila homolog of HD-PTP as a regulator of the oncoprotein Yorkie.

Mammalian cancers depend on "multiple hits," some of which promote growth and some of which block apoptosis. We screened for mutations that require a synergistic block in apoptosis to promote tissue overgrowth and identified myopic (mop), the Drosophila homolog of the candidate tumor-suppressor and endosomal regulator His-domain protein tyrosine phosphatase (HD-PTP). We find that Myopic regulates the Salvador/Warts/Hippo (SWH) tumor suppressor pathway: Myopic PPxY motifs bind conserved residues in the WW domains of the transcriptional coactivator Yorkie, and Myopic colocalizes with Yorkie at endosomes. Myopic controls Yorkie endosomal association and protein levels, ultimately influencing expression of some Yorkie target genes. However, the antiapoptotic gene diap1 is not affected, which may explain the conditional nature of the myopic growth phenotype. These data establish Myopic as a Yorkie regulator and implicate Myopic-dependent association of Yorkie with endosomal compartments as a regulatory step in nuclear outputs of the SWH pathway.

Functional interactions between the erupted/tsg101 growth suppressor gene and the DaPKC and rbf1 genes in Drosophila imaginal disc tumors.

BACKGROUND: The Drosophila gene erupted (ept) encodes the fly homolog of human Tumor Susceptibility Gene-101 (TSG101), which functions as part of the conserved ESCRT-1 complex to facilitate the movement of cargoes through the endolysosomal pathway. Loss of ept or other genes that encode components of the endocytic machinery (e.g. synatxin7/avalanche, rab5, and vps25) produces disorganized overgrowth of imaginal disc tissue. Excess cell division is postulated to be a primary cause of these 'neoplastic' phenotypes, but the autonomous effect of these mutations on cell cycle control has not been examined.

 

PRINCIPAL FINDINGS: Here we show that disc cells lacking ept function display an altered cell cycle profile indicative of deregulated progression through the G1-to-S phase transition and express reduced levels of the tumor suppressor ortholog and G1/S inhibitor Rbf1. Genetic reductions of the Drosophila aPKC kinase (DaPKC), which has been shown to promote tumor growth in other fly tumor models, prevent both the ept neoplastic phenotype and the reduction in Rbf1 levels that otherwise occurs in clones of ept mutant cells; this effect is coincident with changes in localization of Notch and Crumbs, two proteins whose sorting is altered in ept mutant cells. The effect on Rbf1 can also be blocked by removal of the gamma-secretase component presenilin, suggesting that cleavage of a gamma-secretase target influences Rbf1 levels in ept mutant cells. Expression of exogenous rbf1 completely ablates ept mutant eye tissues but only mildly affects the development of discs composed of cells with wild type ept.

 

CONCLUSIONS: Together, these data show that loss of ept alters nuclear cell cycle control in developing imaginal discs and identify the DaPKC, presenilin, and rbf1 genes as modifiers of molecular and cellular phenotypes that result from loss of ept.

Genetic interactions between the Drosophila tumor suppressor gene ept and the stat92E transcription factor.

BACKGROUND: Tumor Susceptibility Gene-101 (TSG101) promotes the endocytic degradation of transmembrane proteins and is implicated as a mutational target in cancer, yet the effect of TSG101 loss on cell proliferation in vertebrates is uncertain. By contrast, Drosophila epithelial tissues lacking the TSG101 ortholog erupted (ept) develop as enlarged undifferentiated tumors, indicating that the gene can have anti-growth properties in a simple metazoan. A full understanding of pathways deregulated by loss of Drosophila ept will aid in understanding potential links between mammalian TSG101 and growth control.

 

PRINCIPAL FINDINGS: We have taken a genetic approach to the identification of pathways required for excess growth of Drosophila eye-antennal imaginal discs lacking ept. We find that this phenotype is very sensitive to the genetic dose of stat92E, the transcriptional effector of the Jak-Stat signaling pathway, and that this pathway undergoes strong activation in ept mutant cells. Genetic evidence indicates that stat92E contributes to cell cycle deregulation and excess cell size phenotypes that are observed among ept mutant cells. In addition, autonomous Stat92E hyper-activation is associated with altered tissue architecture in ept tumors and an effect on expression of the apical polarity determinant crumbs.

 

CONCLUSIONS: These findings identify ept as a cell-autonomous inhibitor of the Jak-Stat pathway and suggest that excess Jak-Stat signaling makes a significant contribution to proliferative and tissue architectural phenotypes that occur in ept mutant tissues.

The archipelago tumor suppressor gene limits rb/e2f-regulated apoptosis in developing Drosophila tissues.

BACKGROUND: The Drosophila archipelago gene (ago) encodes the specificity component of a ubiquitin ligase that targets the cyclin E and dMyc proteins for degradation. Its human ortholog, Fbw7, is commonly lost in cancers, suggesting that failure to degrade ago/Fbw7 targets drives excess tissue growth.

 

RESULTS: We find that ago loss induces hyperplasia of some organs but paradoxically reduces the size of the adult eye. This reflects a requirement for ago to restrict apoptotic activity of the rbf1/de2f1 pathway adjacent to the eye-specific morphogenetic furrow (MF): ago mutant cells display elevated de2f1 activity, express the prodeath dE2f1 targets hid and rpr, and undergo high rates of apoptosis. These phenotypes are dependent on rbf1, de2f1, hid, and the rbf1/de2f1 regulators cyclin E and dacapo but are independent of dp53. A transactivation-deficient de2f1 allele blocks MF-associated apoptosis of ago mutant cells but does not retard their clonal overgrowth, indicating that intact de2f1 function is required for the death but not overproliferation of ago cells. Epidermal growth factor receptor (EGFR) and wingless (wg) alleles also modify the ago apoptotic phenotype, indicating that these pathways may modulate the underlying sensitivity of ago mutant cells to apoptotic signals.

 

CONCLUSIONS: These data show that ago loss requires a collaborating block in cell death to efficiently drive tissue overgrowth and that this conditional phenotype reflects a role for ago in restricting apoptotic output of the rbf1/de2f1 pathway. Moreover, the susceptibility of ago mutant cells to succumb to this apoptotic program appears to depend on local variations in extracellular signaling that could thus determine tissue-specific fates of ago mutant cells.

  

ESCRTing cell proliferation off the beaten path: lessons from the drosophila eye.

A series of recently published studies have established that defects in endocytic sorting can elicit dramatic tissue overgrowth phenotypes in developing organs of the fruit fly Drosophila melanogaster. Such a link had been suggested by mammalian cell culture experiments almost ten years ago, but in vivo evidence of this link, and the mechanisms through which it might occur, had remained elusive. Drosophila has now proven to be an excellent developmental system in which to both document the effects of endocytic defects on tissue growth and patterning, and to probe the basis of these phenotypes. This work has begun to illuminate some surprising connections between the endocytic trafficking of protein cargoes and the control of cell proliferation and tissue architecture. These connections touch major cell biological processes, including cell division, growth, death, and polarity, and have begun to paint a complex, yet intriguing, picture of how defective endocytic sorting can affect developing tissues.

A novel functional activator of the Drosophila JAK/STAT pathway, unpaired2, is revealed by an in vivo reporter of pathway activation.

Striking similarities continue to emerge between the mammalian and Drosophila JAK/STAT signaling pathway. However, until now there has not been the ability to monitor global pathway activity during development. We have generated a transgenic animal with a JAK/STAT responsive reporter gene that can be used to monitor pathway activation in whole Drosophila embryos. Expression of the lacZ reporter regulated by STAT92E binding sites can be detected throughout embryogenesis, and is responsive to the Janus Kinase hopscotch and the ligand upd. The system has enabled us to identify the effect of a predicted gene related to upd, designated upd2, whose expression initiates during germ band extension. The stimulatory effect of upd2 on the JAK/STAT reporter can also be demonstrated in Drosophila tissue culture cells. This reporter system will benefit future investigations of JAK/STAT signaling modulators both in whole animals and tissue culture.

Please reload

bottom of page